Показати простий запис статті

dc.contributor.author Ghorbel, A.
dc.date.accessioned 2019-02-11T15:25:19Z
dc.date.available 2019-02-11T15:25:19Z
dc.date.issued 2011
dc.identifier.citation Harmonic Analysis in One-Parameter Metabelian Nilmanifolds / A. Ghorbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146800
dc.description.abstract Let G be a connected, simply connected one-parameter metabelian nilpotent Lie group, that means, the corresponding Lie algebra has a one-codimensional abelian subalgebra. In this article we show that G contains a discrete cocompact subgroup. Given a discrete cocompact subgroup Γ of G, we define the quasi-regular representation τ=indΓG1 of G. The basic problem considered in this paper concerns the decomposition of τ into irreducibles. We give an orbital description of the spectrum, the multiplicity function and we construct an explicit intertwining operator between τ and its desintegration without considering multiplicities. Finally, unlike the Moore inductive algorithm for multiplicities on nilmanifolds, we carry out here a direct computation to get the multiplicity formula. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Harmonic Analysis in One-Parameter Metabelian Nilmanifolds uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA

Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті


Розширений пошук


Мій обліковий запис