Показати простий запис статті

dc.contributor.author Curtright, T.L.
dc.contributor.author Fairlie, D.B.
dc.contributor.author Zachos, C.K.
dc.date.accessioned 2019-02-10T10:05:29Z
dc.date.available 2019-02-10T10:05:29Z
dc.date.issued 2014
dc.identifier.citation A Compact Formula for Rotations as Spin Matrix Polynomials / T.L. Curtright, D.B.Fairlie, C.K. Zachos // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 17 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 15A16; 15A30
dc.identifier.other DOI:10.3842/SIGMA.2014.084
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146616
dc.description.abstract Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. The simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed. uk_UA
dc.description.sponsorship The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Of fice of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. It was also supported in part by NSF Award PHY-1214521. TLC was also supported in part by a University of Miami Cooper Fellowship. S. Dowker is thanked for bringing ref [12], and whence [5], to our attention. An anonymous referee is especially thanked for bringing [14] and more importantly [13] to our attention. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Compact Formula for Rotations as Spin Matrix Polynomials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис