Показати простий запис статті

dc.contributor.author Jurić, T.
dc.contributor.author Kovačević, D.
dc.contributor.author Meljanac, S.
dc.date.accessioned 2019-02-09T20:58:50Z
dc.date.available 2019-02-09T20:58:50Z
dc.date.issued 2014
dc.identifier.citation κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 81R60; 17B37; 81R50
dc.identifier.other DOI:10.3842/SIGMA.2014.106
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146538
dc.description.abstract Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Deformations of Space-Time and its Symmetries. The full collection is available at http://www.emis.de/journals/SIGMA/space-time.html. The authors would like to thank A. Borowiec, J. Lukierski, A. Pachol, R. Strajn and Z. ˇ Skoda for ˇ useful discussions and comments. The authors would also like to thank the anonymous referee for useful comments and suggestions. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title κ-Deformed Phase Space, Hopf Algebroid and Twisting uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис