Наукова електронна бібліотека
періодичних видань НАН України

C-Integrability Test for Discrete Equations via Multiple Scale Expansions

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Scimiterna, C.
dc.contributor.author Levi, D.
dc.date.accessioned 2019-02-09T19:34:04Z
dc.date.available 2019-02-09T19:34:04Z
dc.date.issued 2010
dc.identifier.citation C-Integrability Test for Discrete Equations via Multiple Scale Expansions / C. Scimiterna, D. Levi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 27 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 34K99; 34E13; 37K10; 37J30
dc.identifier.other DOI:10.3842/SIGMA.2010.070
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146506
dc.description.abstract In this paper, we are extending the well-known integrability theorems obtained by multiple scale techniques to the case of linearizable difference equations. As an example, we apply the theory to the case of a differential-difference dispersive equation of the Burgers hierarchy which via a discrete Hopf-Cole transformation reduces to a linear differential-difference equation. In this case, the equation satisfies the A₁, A₂ and A₃ linearizability conditions. We then consider its discretization. To get a dispersive equation we substitute the time derivative by its symmetric discretization. When we apply to this nonlinear partial difference equation the multiple scale expansion we find out that the lowest order non-secularity condition is given by a non-integrable nonlinear Schrödinger equation. Thus showing that this discretized Burgers equation is neither linearizable not integrable. uk_UA
dc.description.sponsorship The authors have been partly supported by the Italian Ministry of Education and Research, PRIN “Nonlinear waves: integrable finite dimensional reductions and discretizations” from 2007 to 2009 and PRIN “Continuous and discrete nonlinear integrable evolutions: from water waves to symplectic maps” from 2010. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title C-Integrability Test for Discrete Equations via Multiple Scale Expansions uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис