Наукова електронна бібліотека
періодичних видань НАН України

Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Herranz, F.J.
dc.contributor.author Ballesteros, Á
dc.date.accessioned 2019-02-09T17:13:53Z
dc.date.available 2019-02-09T17:13:53Z
dc.date.issued 2006
dc.identifier.citation Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature / F.J. Herranz, Á. Ballesteros // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 43 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 37J35; 22E60; 37J15; 70H06
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146443
dc.description.abstract A family of classical superintegrable Hamiltonians, depending on an arbitrary radial function, which are defined on the 3D spherical, Euclidean and hyperbolic spaces as well as on the (2+1)D anti-de Sitter, Minkowskian and de Sitter spacetimes is constructed. Such systems admit three integrals of the motion (besides the Hamiltonian) which are explicitly given in terms of ambient and geodesic polar coordinates. The resulting expressions cover the six spaces in a unified way as these are parametrized by two contraction parameters that govern the curvature and the signature of the metric on each space. Next two maximally superintegrable Hamiltonians are identified within the initial superintegrable family by finding the remaining constant of the motion. The former potential is the superposition of a (curved) central harmonic oscillator with other three oscillators or centrifugal barriers (depending on each specific space), so that this generalizes the Smorodinsky-Winternitz system. The latter one is a superposition of the Kepler-Coulomb potential with another two oscillators or centrifugal barriers. As a byproduct, the Laplace-Runge-Lenz vector for these spaces is deduced. Furthermore both potentials are analysed in detail for each particular space. Some comments on their generalization to arbitrary dimension are also presented. uk_UA
dc.description.sponsorship This work was partially supported by the Ministerio de Educaci´on y Ciencia (Spain, Project FIS2004-07913) and by the Junta de Castilla y Le´on (Spain, Projects BU04/03 and VA013C05). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис