Показати простий запис статті
dc.contributor.author |
Takasaki, K. |
|
dc.date.accessioned |
2019-02-07T19:55:15Z |
|
dc.date.available |
2019-02-07T19:55:15Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Dispersionless Hirota Equations of Two-Component BKP Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 35Q58; 37K10; 58F07 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146164 |
|
dc.description.abstract |
The BKP hierarchy has a two-component analogue (the 2-BKP hierarchy). Dispersionless limit of this multi-component hierarchy is considered on the level of the τ-function. The so called dispersionless Hirota equations are obtained from the Hirota equations of the τ-function. These dispersionless Hirota equations turn out to be equivalent to a system of Hamilton-Jacobi equations. Other relevant equations, in particular, dispersionless Lax equations, can be derived from these fundamental equations. For comparison, another approach based on auxiliary linear equations is also presented. |
uk_UA |
dc.description.sponsorship |
I would like to thank T. Ikeda, T. Shiota and T. Takebe for cooperation. I also would like to thank L. Martinez Alonso, B. Konopelchenko, M. Ma˜nas and A. Sorin for useful discussions during the SISSA conference “Riemann–Hilbert Problems, Integrability and Asymptotics” in September, 2005. This research was partially supported by Grant-in-Aid for Scientific Research No. 16340040 from the Japan Society for the Promotion of Science. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Dispersionless Hirota Equations of Two-Component BKP Hierarchy |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті