Наукова електронна бібліотека
періодичних видань НАН України

Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Kuniba, A.
dc.contributor.author Takagi, T.
dc.date.accessioned 2019-02-07T19:10:13Z
dc.date.available 2019-02-07T19:10:13Z
dc.date.issued 2010
dc.identifier.citation Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾ / A. Kuniba, T. Takagi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 41 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 82B23; 37K15; 68R15; 37B1
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146151
dc.description.abstract We study an integrable vertex model with a periodic boundary condition associated with Uq(An⁽¹⁾ at the crystallizing point q=0. It is an (n+1)-state cellular automaton describing the factorized scattering of solitons. The dynamics originates in the commuting family of fusion transfer matrices and generalizes the ultradiscrete Toda/KP flow corresponding to the periodic box-ball system. Combining Bethe ansatz and crystal theory in quantum group, we develop an inverse scattering/spectral formalism and solve the initial value problem based on several conjectures. The action-angle variables are constructed representing the amplitudes and phases of solitons. By the direct and inverse scattering maps, separation of variables into solitons is achieved and nonlinear dynamics is transformed into a straight motion on a tropical analogue of the Jacobi variety. We decompose the level set into connected components under the commuting family of time evolutions and identify each of them with the set of integer points on a torus. The weight multiplicity formula derived from the q=0 Bethe equation acquires an elegant interpretation as the volume of the phase space expressed by the size and multiplicity of these tori. The dynamical period is determined as an explicit arithmetical function of the n-tuple of Young diagrams specifying the level set. The inverse map, i.e., tropical Jacobi inversion is expressed in terms of a tropical Riemann theta function associated with the Bethe ansatz data. As an application, time average of some local variable is calculated. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the Workshop “Geometric Aspects of Discrete and UltraDiscrete Integrable Systems” (March 30 – April 3, 2009, University of Glasgow, UK). The full collection is available at http://www.emis.de/journals/SIGMA/GADUDIS2009.html. A.K. thanks Rei Inoue, Masato Okado, Reiho Sakamoto, Mark Shimozono, Alexander Veselov, Yasuhiko Yamada for discussion, and Claire Gilson, Christian Korf f and Jon Nimmo for a warm hospitality during the conference, Geometric Aspects of Discrete and Ultra-Discrete Integrable Systems, March 30 – April 3, 2009, Glasgow, UK. This work is partially supported by Grandin-Aid for Scientific Research JSPS No. 21540209. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾ uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис