Показати простий запис статті

dc.contributor.author Gazeau, J.P.
dc.contributor.author Siegl, P.
dc.contributor.author Youssef, A.
dc.date.accessioned 2019-02-07T19:05:51Z
dc.date.available 2019-02-07T19:05:51Z
dc.date.issued 2010
dc.identifier.citation Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 81T20; 81R05; 81R20; 22E70; 20C35
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146149
dc.description.abstract Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomology which deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Methods V”. The full collection is available at http://www.emis.de/journals/SIGMA/Prague2009.html. Throughout this text, for convenience, we will mostly work in units c = 1 = ~, for which R = H−1, while restoring physical units when is necessary. P. Siegl appreciates the support of CTU grant No.CTU0910114 and MSMT project No.LC06002 uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Krein Spaces in de Sitter Quantum Theories uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис