Исследуются свойства k-мерных приближений булевых функций. Одним из основных результатов является теорема о строении k-мерных функций степени d, находящихся на расстоянии не более 2^(n-d)(1- ε), ε∊(0,1), от заданной булевой функции n переменных, 1≤d≤k≤n, ε∊(0,1). Эта теорема существенно усиливает ранее известный результат П. Гопалана и позволяет заметно повысить эффективность предложенного им алгоритма построения всех указанных k-мерных булевых функций.
Досліджуються властивості k-вимірних наближень булевих функцій. Одним з основних результат ів є теорема про будову k-вимірних функцій степеня d, що знаходяться на відстані не більше 2^(n-d)(1- ε), ε∊(0,1), від заданої булевої функції n змінних, 1≤d≤k≤n, ε∊(0,1). Ця теорема суттєво підсилює раніше відомий результат П. Гопалана та дозволяє значно підвищити ефективність запропонованого ним алгоритму побудови усіх зазначених k-вимірних булевих функцій.
The properties of k-dimensional approximations of Boolean functions are analyzed. One of the main results is a theorem that specifies the structure of k-dimensional functions of degree d within the distance of 2^(n-d)(1- ε), ε∊(0,1), from a specified n-variable function, 1≤d≤k≤n, ε∊(0,1). This theorem significantly improves Gopalan’s result and notably increases the efficiency of his algorithm for finding all of the mentioned k-dimensional Boolean functions.