Наукова електронна бібліотека
періодичних видань НАН України

3-D математическая модель температурного поля непрерывного слитка

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Иванова, А.А.
dc.date.accessioned 2017-09-19T15:25:59Z
dc.date.available 2017-09-19T15:25:59Z
dc.date.issued 2011
dc.identifier.citation 3-D математическая модель температурного поля непрерывного слитка / А.А. Иванова // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2011. — Т. 23. — С. 100-109. — Бібліогр.: 10 назв. — рос. uk_UA
dc.identifier.issn 1683-4720
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/124053
dc.description.abstract Представлена трехмерная математическая модель нестационарного температурного поля непрерывнолитой заготовки и стенок кристаллизатора. Модель учитывает зависимости теплофизических параметров от температуры, наличие зазора между поверхностью слитка и стенкой кристаллизатора, характер водяного охлаждения кристаллизатора, зависимость граничных условий от конфигурации и режимов работы зоны вторичного охлаждения. Положение границы раздела фаз определяется из условий Стефана. Задача численно решена методом конечных разностей. Представлены и проанализированы результаты расчетов. uk_UA
dc.description.abstract Представлена тривимiрна математична модель нестацiонарного температурного поля безперервнолитої заготовки й стiнок кристалiзатора. Модель враховує залежнiсть теплофiзичних параметрiв вiд температури, наявнiсть зазору мiж поверхнiстю злитка й стiнкой кристалiзатора, характер водяного охолодження кристалiзатора, залежнiсть граничних умов вiд конфiгурацiї й режимiв роботи зони вторинного охолодження. Положення межi розподiлу фаз визначається умовами Стефана. Задачу чисельно розв’язано методом кiнцевих рiзниць. Представлено i проаналiзовано результати розрахункiв. uk_UA
dc.description.abstract The three-dimensional mathematical model of nonstationary temperature field of continuous ingot and mold walls is presented. Model takes into account dependence of thermophysical parameters on the temperature, the presence of the gap between the surface of the ingot and the mold wall, the mode of mold water-cooling, the dependence of the boundary conditions on the configuration and modes of the secondary cooling system. The position of the interface is determined from the Stefan condition. The numerical solution of the problem is performed by the finite-difference method. The results of numerical solution are presented and analysed. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Труды Института прикладной математики и механики
dc.title 3-D математическая модель температурного поля непрерывного слитка uk_UA
dc.title.alternative 3-D математична модель температурного поля безперервного злитка uk_UA
dc.title.alternative 3-D mathematical model of temperature field of continuous ingot uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 681.5:51-74


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис