Наукова електронна бібліотека
періодичних видань НАН України

Pseudogaps: introducing the length scale into dynamical mean-field theory

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Kuchinskii, E.Z.
dc.contributor.author Nekrasov, I.A.
dc.contributor.author Sadovskii, V.M.
dc.date.accessioned 2017-06-11T12:00:20Z
dc.date.available 2017-06-11T12:00:20Z
dc.date.issued 2006
dc.identifier.citation Pseudogaps: introducing the length scale into dynamical mean-field theory / E.Z. Kuchinskii, I.A. Nekrasov, V.M. Sadovskii // Физика низких температур. — 2006. — Т. 32, № 4-5. — С. 528–537. — Бібліогр.: 23 назв. — англ. uk_UA
dc.identifier.issn 0132-6414
dc.identifier.other PACS: 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.+h, 74.72.–h
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/120182
dc.description.abstract Pseudogap physics in strongly correlated systems is essentially scale dependent. We generalize the dynamical mean-field theory (DMFT) by introducing into the DMFT equations dependence on the correlation length of pseudogap fluctuations via an additional (momentum-dependent) self-energy ∑k. This self-energy describes nonlocal dynamical correlations induced by short-ranged collective SDW-like antiferromagnetic spin (or CDW-like charge) fluctuations. At high enough temperatures these fluctuations can be viewed as a quenched Gaussian random field with finite correlation length. This generalized DMFT + ∑k approach is used for the numerical solution of the weakly doped one-band Hubbard model with repulsive Coulomb interaction on a square lattice with nearest and next nearest neighbor hopping. The effective single impurity problem is solved by the numerical renormalization group (NRG). Both types of strongly correlated metals, namely (i) the doped Mott insulator and (ii) the case of bandwidth W ≲ U (U is the value of local Coulomb interaction) are considered. Densities of states, spectral functions and ARPES spectra calculated within DMFT + ∑k show a pseudogap formation near the Fermi level of the quasiparticle band. We also briefly discuss effects of random impurity scattering. Finally we demonstrate the qualitative picture of Fermi surface «destruction» due to pseudogap fluctuations and formation of «Fermi arcs» which agrees well with ARPES observations. uk_UA
dc.description.sponsorship We are grateful to Th. Pruschke for providing us with his NRG code and helpful discussions. This work was supported in part by RFBR grants 05-02-16301, 05-02-17244, and programs of the Presidium of the Russian Academy of Sciences (RAS) «Quantum macrophysics» and of the Division of Physical Sciences of the RAS «Strongly correlated electrons in semiconductors, metals, superconductors and magnetic materials». I.N. acknowledges support from the Dynasty Foundation and International Centre for Fundamental Physics in Moscow program for young scientists 2005 and Russian Science Support Foundation program for young PhD of the Russian Academy of Sciences 2005. uk_UA
dc.language.iso en uk_UA
dc.publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України uk_UA
dc.relation.ispartof Физика низких температур
dc.subject Pseudogap uk_UA
dc.title Pseudogaps: introducing the length scale into dynamical mean-field theory uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис