Показати простий запис статті

dc.contributor.author Bier, T.
dc.date.accessioned 2017-06-07T18:39:56Z
dc.date.available 2017-06-07T18:39:56Z
dc.date.issued 2008
dc.identifier.citation On matrices associated to prime factorization of odd integers / T. Bier // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 723-747. — Бібліогр.: 3 назв. — англ. uk_UA
dc.identifier.issn 1607-324X
dc.identifier.other PACS: 02.10.Yn
dc.identifier.other DOI:10.5488/CMP.11.4.723
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/119636
dc.description.abstract In this paper we introduce in section 5 integral matrices M(n) for any factorization of an odd integer n into r distinct odd primes. The matrices appear in several versions according to a parameter ρ ϵ 2 [0, 1]; they have size 2r * 2r and their rank satisfies e.g. for ρ = 1/2 the inequalities of theorem 4: r + 1 ≤ rank(M(n)) ≤ 2r⁻¹+1; which are obtained using theorem 1 discussed separately in the first few sections. The cases ρ = 0, 1, 1/2 are analyzed in some detail, and various counterexamples for ρ != 0, 1, 1/2 are included. There are several main results, theorem 5 is a duality between the cases ρ = 0 and ρ = 1, and theorem 6 is a periodicity theorem. The most important result perhaps is theorem 8 (valid for ρ = 1/2 only) on the existence of odd squarefree integers n with r odd prime factors such that rank(M(n)) = r + 1 attains the lower bound shown previously. uk_UA
dc.description.abstract В цiй роботi у параграфi 5 ми вводимо цiлочисельнi матрицi M(n) для довiльної факторизацiї непарного цiлого числа n на r рiзних непарних простих чисел. Матрицi мають декiлька версiй iндексованих параметром ρ ϵ 2 [0, 1], розмiром 2n * 2n, їх ранг задовiльняє, наприклад, для ρ = 1/2, нерiвнiсть з Теореми 4: r+1... , що одержується за допомогою Теореми 1, яка обговорюється окремо у перших параграфах. Випадки ρ = 0, 1, 1/2 аналiзуються бiльш детально, наводяться рiзноманiтнi приклади для ρ != 0, 1, 1/2. Подаємо ряд головних результатiв: Теорема 5, що описує дуальнiсть випадкiв ρ = 0 i ρ = 1, Теорема 6, що описує перiодичнiсть. Можливо найголовнiшою є Теорема 8 (дiйсна тiльки для ρ = 1/2) про iснування непарних, без квадратiв, цiлих чисел n з r непарними простими множниками, таких, що rank(M(n)) = r + 1, тобто досягає нижньої межi, згаданої вище. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут фізики конденсованих систем НАН України uk_UA
dc.relation.ispartof Condensed Matter Physics
dc.title On matrices associated to prime factorization of odd integers uk_UA
dc.title.alternative Про матрицi, зв’язанi з розкладом на простi множники непарних цiлих чисел uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис