Показати простий запис статті

dc.contributor.author Guymon, C.G.
dc.contributor.author Rowley, R.L.
dc.contributor.author Harb, J.N.
dc.contributor.author Wheeler, D.R.
dc.date.accessioned 2017-06-07T15:38:51Z
dc.date.available 2017-06-07T15:38:51Z
dc.date.issued 2005
dc.identifier.citation Simulating an electrochemical interface using charge dynamics / C.G. Guymon, R.L. Rowley, J.N. Harb, D.R. Wheeler // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 335–356. — Бібліогр.: 29 назв. — англ. uk_UA
dc.identifier.issn 1607-324X
dc.identifier.other PACS: 61.20.Qg, 61.20.Ja
dc.identifier.other DOI:10.5488/CMP.8.2.335
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/119605
dc.description.abstract We present a simple classical method for treating charge mobility in metals adjacent to liquid solutions. The method, known as electrode charge dynamics, effectively bridges the computational gap between ab initio calculations on small metal clusters and large-scale simulations of metal surfaces with arbitrary geometry. We have obtained model parameters for a copper (111) metal surface using high-level quantum-mechanical calculations on a 10-atom copper cluster. We validated the model against the classical image-charge result and ab initio results on an 18-atom copper cluster. The model is used in molecular dynamics simulations to predict the structure of the fluid interface for neat water and for aqueous NaCl solution. We find that water is organized into a two-dimensional ice-like layer on the surface and that both Na⁺ and Cl⁻ are strongly bound to the copper. When charging the metal electrode, most of the electrolyte response occurs in the diffuse part of the double layer uk_UA
dc.description.abstract Ми представляємо простий класичний метод для трактування зарядової мобільності у металах, які межують з рідкими розчинами. Метод, відомий як електродна зарядова динаміка, ефективно заповнює прогалину між ab initio розрахунками на малих металічних кластерах і велико-масштабними симуляціями металічних поверхонь з довільною геометрією. Ми отримали модельні параметри для металічної (111) поверхні міді, використовуючи квантово-механічні розрахунки високого порядку на 10-атомному мідному кластері. Модель була перевірена шляхом порівняння з класичними результатами по методу відображень, а також з ab initio результатами для 18-атомного мідного кластера. Модель використана в молекулярно динамічних розрахунках для структури флюїдної поверхні чистої води і водного розчину NaCl. Ми побачили, що вода організовується у двовимірний льодоподібний шар на поверхні і що обидва, Na⁺ i Cl⁻, іони є сильно прив’язані до міді. Коли металічний електрод заряджати, то основна реакція електроліту проявляється у дифузивній частині подвійного шару. uk_UA
dc.description.sponsorship We want to thank Dr. Tapani Pakkanen and his students at the University of Joensuu for their work in performing much of the ab initio calculations presented here. We’d also like to acknowledge financial support from the NSF, grant number CTS–0215786 as well as support from Brigham Young University. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут фізики конденсованих систем НАН України uk_UA
dc.relation.ispartof Condensed Matter Physics
dc.title Simulating an electrochemical interface using charge dynamics uk_UA
dc.title.alternative Симуляція електрохімічної поверхні з використанням зарядової динаміки uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис