Анотація:
The magnetic resonance operation by electric field is highly nontrivial but the most demanding function in
the future spin-electronics. Recently observed in a variety of multiferroics materials named the collective electrically
active magnetic excitations, frequently referred to as “electromagnons”, reveal a possible way to implement
such a function. Experimental advances in terahertz spectroscopy of electromagnons in multiferroics as well as
related theoretical models are reviewed. The earlier theoretical works, where the existence of electric-dipole active
magnetic excitations in antiferro- and ferrimagnets with collinear spin structure has been predicted, are also
discussed. Multi-sublattice magnets with electrically active magnetic excitations at room temperature give a direct
possibility to transform one type of excitation into another in a terahertz time-domain. This is of crucial importance
for the magnon-based spintronics as only the short-wavelength exchange magnons allow the signal
processing on the nanoscale distance.