Приведено обоснование выбора аппроксимирующей функции в модели восстановления функциональных зависимостей в аддитивной и мультипликативной формах в виде полиномов Гегенбауэра. Дан сравнительный анализ применения полученных аппроксимирующих функций с результатами приближения с помощью полиномов Чебышева и Лежандра, которые являются частными случаями полиномов Гегенбауэра. Показано, что полиномы Гегенбауэра являются более универсальными и удобными, позволяющие при неизменной сложности вычислений добиваться высокой точности аппроксимации для более широкого спектра восстанавливаемых зависимостей.
Наведено обґрунтування вибору базової апроксимуючої функції в моделі відновлення функціональних залежностей в адитивній і мультиплікативній формах у вигляді поліномів Гегенбауера. Дано порівняльний аналіз застосування отриманих апроксимую-чих функцій з результатами наближення за допомогою поліномів Чебишева і Лежандра, які є окремими випадками поліномів Гегенбауера. Показано, що поліноми Гегенбауера є більш універсальними і зручними, що дозволяють при незмінній складності отримати високу точність апроксимації для більш широкого спектру відновлюваних залежностей.
The choice of a base approximating function in the recovery model of functional dependencies in additive and multiplicative forms as Gegenbauer polynomials is justified. A comparative analysis of the applications of the approximating functions with the results of approximation with the help of the Chebyshev and Legendre polynomials, who are special cases of Gegenbauer polynomials is performed. It is shown that the Gegenbauer polynomials are more versatile and comfortable, allowing for a constant computational complexity to achieve a high accuracy of approximation for a wide range of restored dependencies.