We consider 2D map with the singularity. Here we observe an intermittency behavior. This system can be interpreted in two ways. In the first way this map can arise like a result of quantization of the continuous Hamiltonian system with one degree of freedom. In the second way we can interpret this map like a Poincaré section of some 2D Hamiltonian system. As is well known the behavior of a Poincaré section defines the system behavior as a whole. We investigate the mechanism of the chaos generation near singularity. We show that singularity can generate a stochastic sea in Hamiltonian systems under any value of a perturbation. Originating modes have intermittent structure.
Подано дослідження властивостей двомірного відображення з сингулярністю. У такому відображенні спостерігається переміжність. Така система може виникати двома способами. По-перше, вона може розглядатися як результат дискретизації безперервної гамільтонової системи з одним ступенем свободи. По-друге, ми можемо розглядати таке відображення як переріз Пуанкаре деякої двовимірної гамільтонової системи. При цьому поведінка перерізу Пуанкаре в цілому визначає поведінку всієї системи. Досліджувался механізм виникнення переміжності поблизу сингулярності. Показано, що сингулярність призводить до виникнення стохастичного моря у гамільтонових системах за будь-яких значень збурення. Режими, що виникають при цьому, мають переміжну структуру.
Представлено исследование свойств двумерного отображения с особенностью. В таком отображении наблюдается перемежаемость. Такая система может возникать двумя способами. Во-первых, она может рассматриваться как результат дискретизации непрерывной гамильтоновой системы с одной степенью свободы. Во-вторых, мы можем рассматривать такое отображение как сечение Пуанкаре некоторой двумерной гамильтоновой системы. При этом поведение сечения Пуанкаре определяет поведение системы в целом. Исследовался механизм возникновения перемежаемости вблизи особенности. Показано, что особенность приводит к возникновению стохастического моря в гамильтоновых системах при любых значениях возмущения. Возникающие при этом режимы имеют перемежаемую структуру.