In this paper, we aim to show that the Meijer G-functions can serve to find explicit solutions of partial differential equations (PDEs) related to some mathematical models of physical phenomena, as for example, the Laplace equation, the diffusion equation and the Schrödinger equation. Usually, the first step in solving such equations is to use the separation of variables method to reduce them to ordinary differential equations (ODEs). Very often this equation happens to be a case of the linear ordinary differential equation satisfied by the G-function, and so, by proper selection of its orders m; n; p; q and the parameters, we can find the solution of the ODE explicitly. We illustrate this approach by proposing solutions as: the potential function Ф, the temperature function T and the wave function Ψ, all of which are symmetric product forms of the Meijer G-functions. We show that one of the three basic univalent Meijer G-functions, namely G₀,₂¹’⁰, appears in all the mentioned solutions.
Цель этой статьи - показать, что G-функции Мейера можно использовать для нахождения в явном виде решений уравнений в частных производных, связанных с некоторыми математическими моделями физических явлений, таких как, например, уравнение Лапласа, уравнение диффузии и уравнение Шредингера. Как правило, первым шагом в решении таких уравнений является использование метода разделения переменных для того, чтобы свести их к обыкновенным дифференциальным уравнениям (ОДУ). Очень часто это уравнение оказывается случаем линейного обыкновенного дифференциального уравнения, которое удовлетворяет G-функция и поэтому, правильно выбрав ее порядок m; n; p; q и параметры, мы можем найти решение ОДУ в явном виде. Мы иллюстрируем этот подход, предлагая такие решения, как потенциальная функция Ф, температурная функция T и волновая функция Ψ, все из которых являются видами симметричных произведений G-функций Мейера. Показано, что одна из трех основных однолистных G-функций Мейера, а именно G₀,₂¹’⁰, встречается во всех упомянутых решениях.