Показати простий запис статті

dc.contributor.author Samoilenko, Yu.S.
dc.contributor.author Yakymenko, D.Yu.
dc.date.accessioned 2010-02-02T12:58:40Z
dc.date.available 2010-02-02T12:58:40Z
dc.date.issued 2009
dc.identifier.citation On n-Tuples of Subspaces in Linear and Unitary Spaces / Yu.S. Samoilenko, D.Yu. Yakymenko // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 48–60. — Библиогр.: 34 назв. — англ. uk_UA
dc.identifier.issn 1029-3531
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/5700
dc.description.abstract We study a relation between brick n-tuples of subspaces of a finite dimensional linear space, and irreducible n-tuples of subspaces of a finite dimensional Hilbert (unitary) space such that a linear combination, with positive coefficients, of orthogonal projections onto these subspaces equals the identity operator. We prove that brick systems of one-dimensional subspaces and the systems obtained from them by applying the Coxeter functors (in particular, all brick triples and quadruples of subspaces) can be unitarized. For each brick triple and quadruple of subspaces, we describe sets of characters that admit a unitarization. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.title On n-Tuples of Subspaces in Linear and Unitary Spaces uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис