Наукова електронна бібліотека
періодичних видань НАН України

Динамическая устойчивость вязкоупругой цилиндрической панели с сосредоточенными массами

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Эшматова, Б.Х.
dc.contributor.author Ходжаев, Д.А.
dc.date.accessioned 2013-08-17T16:56:29Z
dc.date.available 2013-08-17T16:56:29Z
dc.date.issued 2008
dc.identifier.citation Динамическая устойчивость вязкоупругой цилиндрической панели с сосредоточенными массами / Б.X. Эшматова, Д.А. Ходжаев // Проблемы прочности. — 2008. — № 4. — С. 132-147. — Бібліогр.: 28 назв. — рос. uk_UA
dc.identifier.issn 0556-171X
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/48266
dc.description.abstract Рассматривается задача о динамической устойчивости вязкоупругой цилиндрической пане­ли с сосредоточенными массами, основанная на гипотезе Кирхгоффа-Лява в геометрически нелинейной постановке. В уравнение движения цилиндрической панели эффект действия сосредоточенных масс вводится с использованием δ-функции Дирака. Задача решается с помощью метода Бубнова-Галеркина, основанного на многочленной аппроксимации прогибов, в сочетании с численным методом, базирующимся на использовании квадратурных формул. Обоснован выбор сингулярного ядра Колтунова-Ржаницына. Приведены сравнения результатов, полученных по различным теориям. Во всех задачах исследована сходимость метода Бубнова-Галеркина. Показано влияние вязкоупругих свойств материала и сосредоточенных масс на процесс динамической устойчивости цилиндрической панели. uk_UA
dc.description.abstract Розглядається задача про динамічну стійкість в’язкопружної циліндричної панелі зі зосередженими масами, що базується на гіпотезі Кірхгоффа-Лява в геометрично нелінійній постановці. У рівнянні руху циліндричної панелі ефект дії зосереджених мас враховується шляхом використання δ-функції Дірака. Задача розв’язується за допомогою методу Бубнова-Гальоркіна на основі багаточленної апроксимації прогинів у поєднанні з числовим мето­дом. Обгрунтовано вибір сингулярного ядра Колтунова-Ржаніцина. Наведе­но порівняння результатів, що отримані за різними теоріями. У всіх задачах досліджено збіжність методу Бубнова-Гальоркіна. Показано вплив в’язкопружних властивостей матеріалу і зосереджених мас на процес динамічної стійкості циліндричної панелі. uk_UA
dc.description.abstract We discuss the problem of dynamic stability of viscoelastic cylindrical panel with lumped masses, based on the Kirchhoff-Love assump­tion in geometrically nonlinear formulation. The effect of lumped masses is introduced into the equation of motion of the cylindrical panel by using the Dirac δ-function. The problem is solved by the Bubnov-Galerkin method, which is based on polynomial approximation of deflec­tions, in a combination with the numerical method based on use of quadrature formulas. The choice of singular Koltunov-Rzhanitsyn kernel is substantiated. We compare results ob­tained using different theories. For all problems under study we analyze convergence of the Bubnov-Galerkin method. The effect of the viscoelastic properties of the material and of lumped masses on the dynamic stability pro­cess of the cylindrical panel is shown. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України uk_UA
dc.relation.ispartof Проблемы прочности
dc.subject Научно-технический раздел uk_UA
dc.title Динамическая устойчивость вязкоупругой цилиндрической панели с сосредоточенными массами uk_UA
dc.title.alternative Dynamic stability of a viscoelastic cylindrical panel with lumped masses uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 539.1


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис