Показати простий запис статті
dc.contributor.author |
Золотенко, Г.Ф. |
|
dc.date.accessioned |
2009-12-22T16:04:48Z |
|
dc.date.available |
2009-12-22T16:04:48Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Многозначные решения общей задачи теории относительного движения жидкости / Г.Ф. Золотенко // Прикладна гідромеханіка. — 2006. — Т. 8, № 1. — С. 22-30. — Бібліогр.: 8 назв. — рос. |
uk_UA |
dc.identifier.issn |
1561-9087 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/4745 |
|
dc.description.abstract |
Исходная общая задача теории относительного движения жидкости в виде уравнения Лапласа с граничными и начальными условиями переформулирована как начально-краевая задача для системы двух уравнений, состоящей из уравнения Лагранжа-Коши и уравнения Лапласа. Установлена гиперболичность уравнения Лагранжа-Коши для квазипотенциала относительной скорости жидкости. Показано, что свободная поверхность жидкости является характеристикой этой формы уравнения Лагранжа-Коши. Доказана возможность существования многозначных решений рассматриваемой задачи и приведен пример такого решения (задача о "летящем цилиндре''). Сформулированы условия совместности данных Коши на свободной поверхности жидкости как на характеристике. |
uk_UA |
dc.description.abstract |
Вихiдну загальну задачу теорiї вiдносного руху рiдини у виглядi рiвняння Лапласа з граничними та початковими умовами переформульовано як початково-крайову задачу для системи двох рiвнянь, що складається з рiвняння Лагранжа-Кошi та рiвняння Лапласа. Встановлено гiперболiчнiсть рiвняння Лагранжа-Кошi для квазiпотенцiала вiдносної швидкостi рiдини. Показано, що вiльна поверхня є характеристикою цiєї форми рiвняння Лагранжа-Кошi. Доведено можливiсть iснування багатозначних розв'язкiв задачi, що розглядається, та наведено приклад такого розв'язку (задача про "лiтаючий цилiндр''). Сформульовано умови сумiсностi даних Кошi на вiльнiй поверхнi рiдини як на характеристицi. |
uk_UA |
dc.description.abstract |
The input general problem of the theory of relative fluid motion for Laplace equation with initial and boundary conditions is reformulated as an initial-boundary value problem for the system of two equations consisting of Lagrange - Cauchy equation and Laplace equation. It is established that Lagrange - Cauchy equation for quasipotential of relative fluid motion is hyperbolic. It is shown that the free surface of a fluid is the characteristic of this form of Lagrange - Cauchy equation. The possibility of existence of many-valued solutions of a considered problem is proved and the example of such solution is given (the problem on "the flying cylinder''). Conditions of compatibility of Cauchy data on a liquid free surface considered as the characteristic are formulated. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Інститут гідромеханіки НАН України |
uk_UA |
dc.title |
Многозначные решения общей задачи теории относительного движения жидкости |
uk_UA |
dc.title.alternative |
Many-valued solutions of general problem of the theory of relative fluid motion |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
532.5:517.958 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті