Показати простий запис статті

dc.contributor.author Medvedev, K.V.
dc.date.accessioned 2009-11-25T11:06:24Z
dc.date.available 2009-11-25T11:06:24Z
dc.date.issued 2008
dc.identifier.citation Certain properties of triangular transformations of measures / K.V. Medvedev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 95–99. — Бібліогр.: 12 назв.— англ. en_US
dc.identifier.issn 0321-3900
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/4540
dc.description.abstract We study the convergence of triangular mappings on R^n, i.e., mappings T such that the ith coordinate function Ti depends only on the variables x1, . . . ,xi. We show that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations. en_US
dc.description.sponsorship Partially supported by the RFBR projects 07-01-00536 and GFEN-06-01-39003, the DFG grant 436 RUS 113/343/0(R), and the INTAS project 05-109-4856. en_US
dc.language.iso en en_US
dc.publisher Інститут математики НАН України en_US
dc.title Certain properties of triangular transformations of measures en_US
dc.type Article en_US
dc.status published earlier en_US
dc.identifier.udc 519.21


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис