Показати простий запис статті
dc.contributor.author |
Buldygin, V.V. |
|
dc.contributor.author |
Klesov, O.I. |
|
dc.contributor.author |
Steinebach, J.G. |
|
dc.contributor.author |
Tymoshenko, O.A. |
|
dc.date.accessioned |
2009-11-25T11:00:57Z |
|
dc.date.available |
2009-11-25T11:00:57Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
On the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ. |
en_US |
dc.identifier.issn |
0321-3900 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/4532 |
|
dc.description.abstract |
In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and φ, under which φ(X(•)) can be approximated a.s. by φ(μ(•), where μ is the solution of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application of these results we discuss the problem of φ-asymptotic equivalence for solutions of stochastic differential equations. |
en_US |
dc.description.sponsorship |
This work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-2 and 436 UKR 113/68/0-1 |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Інститут математики НАН України |
en_US |
dc.title |
On the φ-asymptotic behaviour of solutions of stochastic differential equations |
en_US |
dc.type |
Article |
en_US |
dc.status |
published earlier |
en_US |
dc.identifier.udc |
519.21 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті