Показати простий запис статті
dc.contributor.author |
Качанова, И.А. |
|
dc.date.accessioned |
2013-05-18T17:42:36Z |
|
dc.date.available |
2013-05-18T17:42:36Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Большие уклонения для обратных стохастических уравнений с квадратичным ростом / И.А. Качанова // Доп. НАН України. — 2011. — № 11. — С. 15-19. — Бібліогр.: 10 назв. — рос. |
uk_UA |
dc.identifier.issn |
1025-6415 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/43817 |
|
dc.description.abstract |
Доведено принцип великих відхилень для обернених стохастичних рівнянь, пов'язаних із сім'єю марковських процесів з малою дифузією, коефіцієнти яких залежать від малого параметра. При обгрунтуванні даного принципу встановлено рівномірну на компактах збіжність розв'язків напівлінійних параболічних рівнянь другого порядку з малим параметром при старшій похідній і коефіцієнтами, що залежать від цього параметра і слабко збігаються в L2,loc. |
uk_UA |
dc.description.abstract |
We prove the large deviation principle for backward stochastic equations related to a family of Markov processes with small diffusion, where the coefficients of these forward-backward equations depend on a small parameter. To prove this principle, we show the convergence of solutions of second-order semilinear parabolic partial equations, which is uniform on compact sets, with small parameter by the second derivative and coefficients which depend on this parameter and weakly converge in L2,loc. |
uk_UA |
dc.language.iso |
uk |
uk_UA |
dc.publisher |
Видавничий дім "Академперіодика" НАН України |
uk_UA |
dc.relation.ispartof |
Доповіді НАН України |
|
dc.subject |
Математика |
uk_UA |
dc.title |
Большие уклонения для обратных стохастических уравнений с квадратичным ростом |
uk_UA |
dc.title.alternative |
Large deviations for backward stochastic equations with quadratic growth |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
519.21 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті