Наукова електронна бібліотека
періодичних видань НАН України

Крайові задачі локально-моментної теорії пружності. Варіаційні формулювання

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Бурак, Я.
dc.contributor.author Мороз, Г.
dc.date.accessioned 2011-06-08T22:55:26Z
dc.date.available 2011-06-08T22:55:26Z
dc.date.issued 2005
dc.identifier.citation Крайові задачі локально-моментної теорії пружності. Варіаційні формулювання / Я. Бурак, Г. Мороз // Фіз.-мат. моделювання та інформ. технології. — 2005. — Вип. 1. — С. 7-17. — Бібліогр.: 6 назв. — укр. uk_UA
dc.identifier.issn 1816-1545
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/20858
dc.description.abstract На основі повних функціоналів запропоновано два варіанти варіаційного формулювання крайових задач нелінійної локально-моментної теорії пружності. У першому випадку базовий потенціал (функція Гамільтона) задається на фазовому просторі векторів силових імпульсів поступальної й обертальної форм руху та тензорів ґрадієнта місця і ґрадієнта локальних поворотів. У другому випадку спряжений потенціал Гамільтона є функцією, яка задана на фазовому просторі векторів швидкостей поступального і обертального рухів та відповідних тензорів силових і моментних напружень. Отримані фізичні співвідношення сконкретизовані для випадків, коли кінетичні рівняння є лінійними, але враховується фізична нелінійність процесів деформування. uk_UA
dc.description.abstract On the basis of complete energy functionals the two variants of variational formulations for boundary value problems of nonlinear local coupled-stress elasticity theory are proposed. In the first case the basic potential (Hamilton function) is specified at the phase space of force impulse vectors of translational motion and angular one, and tensors of the position vector gradient and gradient of local rotation. In the second case the conjugate Hamilton potential is the function being specified at phase space of velocity vectors for translational and angular motions, and corresponding tensors of force and coupled stresses. The obtained physical relationships are elaborated on the case when the kinetic equations are linear with considering physical non-linearity of straining processes. uk_UA
dc.description.abstract Предложены два варианта вариационного формулирования краевых задач нелинейной локально-моментной теории упругости на основании полных функционалов. В первом случае базовый потенциал (функция Гамильтона) задается на фазовом пространстве векторов силовых импульсов поступательной и вращательной форм движения и тензоров градиента места и градиента локальных вращений. Во втором случае сопряженный потенциал Гамильтона является функцией, заданной на фазовом пространстве векторов скоростей поступательного и вращательного движений и соответствующих тензоров силовых и моментных напряжений. Полученные физические соотношения сконкретезированы для случаев, когда кинетические уравнения линейны, но учитывается физическая нелинейность процессов деформирования. uk_UA
dc.description.sponsorship Робота виконана за часткової фінансової підтримки Фонду фундаментальних досліджень Міністерства науки та освіти України. uk_UA
dc.language.iso uk uk_UA
dc.publisher Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України uk_UA
dc.relation.ispartof Фізико-математичне моделювання та інформаційні технології
dc.title Крайові задачі локально-моментної теорії пружності. Варіаційні формулювання uk_UA
dc.title.alternative The boundary value problems of local coupled-stress elasticity theory. The variational formulations uk_UA
dc.title.alternative Краевые задачи локально-моментной теории упругости. Вариационные формулирования uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 539.3


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис