Показати простий запис статті
dc.contributor.author |
Гиль, Н.И. |
|
dc.contributor.author |
Пацук, В.Н. |
|
dc.date.accessioned |
2023-06-08T16:20:57Z |
|
dc.date.available |
2023-06-08T16:20:57Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
Φ-функции 2D-объектов с границами в виде кривых второго порядка / Н.И. Гиль, В.Н. Пацук // Кибернетика и системный анализ. — 2020. — Т. 56, № 5. — С. 136–145. — Бібліогр.: 21 назв. — рос. |
uk_UA |
dc.identifier.issn |
1019-5262 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/190461 |
|
dc.description.abstract |
Рассмотрен один из подходов к представлению в аналитическом виде условий непересечения и включения неориентированных выпуклых 2D-объектов, границами которых являются кривые второго порядка канонического вида. Приведены условия взаимного непересечения пары эллипсов, эллипса и области, ограниченной параболой, а также условия включения круга в эллипс, эллипса в эллипс, эллипса в область, ограниченную параболой. Аналитические условия представлены на основании уравнений границ соответствующих объектов (областей) и приведены к виду системы неравенств, зависящих от параметров размещения объектов и параметра, который является решением некоторого уравнения одной переменной. На основании полученных систем неравенств построены соответствующие Ф-функции. |
uk_UA |
dc.description.abstract |
Розглянуто один з підходів до побудови в аналітичному вигляді умов неперетину і включення неорієнтованих опуклих 2D-об’єктів, границями яких є криві другого порядку канонічного виду. Наведено умови взаємного неперетину пари еліпсів; еліпса і області, обмеженої параболою; умови включення кола в еліпс, еліпса в еліпс, еліпса в область, обмежену параболою. Аналітичні умови наведено відповідно до рівнянь границь відповідних об’єктів (областей) і приведено до вигляду системи нерівностей, що залежать від параметрів розміщення об’єктів і параметра, який є розв’язком деякого рівняння однієї змінної. З урахуванням отриманих систем нерівностей побудовано відповідні Φ-функції. |
uk_UA |
dc.description.abstract |
An approach to constructing analytical conditions of non-intersection and inclusion of non-oriented convex 2D objects is considered, the boundaries of objects being second-order curves in the canonical form. In particular, the conditions of mutual non-intersection of a pair of ellipses; an ellipse and an area bounded by a parabola; conditions of containment of a circle in an ellipse, an ellipse in an ellipse, an ellipse in a region bounded by a parabola are constructed. The analytical conditions are constructed on the basis of the equations of the boundaries of the corresponding objects (areas) and then are reduced to the form of a system of inequalities depending on the placement parameters of the objects and the parameter, which is the solution of a certain equation of one variable. Based on the obtained systems of inequalities, the corresponding Φ-functions are constructed |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
uk_UA |
dc.relation.ispartof |
Кибернетика и системный анализ |
|
dc.subject |
Системний аналіз |
uk_UA |
dc.title |
Φ-функции 2D-объектов с границами в виде кривых второго порядка |
uk_UA |
dc.title.alternative |
Φ-функції 2D-об’єктів з границями у вигляді кривих другого порядку |
uk_UA |
dc.title.alternative |
Φ-functions of 2D objects with boundaries being second order curves |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
519.85 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті