Показати простий запис статті
dc.contributor.author |
Tout, O. |
|
dc.date.accessioned |
2023-03-11T16:20:08Z |
|
dc.date.available |
2023-03-11T16:20:08Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
DOI:10.12958/adm1338 |
|
dc.identifier.other |
2020 MSC: 05E10, 05E16, 20C30. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188713 |
|
dc.description.abstract |
We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra. |
uk_UA |
dc.description.sponsorship |
This research is supported by Narodowe Centrum Nauki, grant number 2017/26/A/ST1/00189. The author is grateful to the Mathematical Institute of the Polish Academy of Sciences branch in Toruń for their hospitality and financial support during the time where this work was accomplished. Especially, he would like to thank Prof. Piotr Śniady for many interesting discussions about the topics presented in this paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
The center of the wreath product of symmetric group algebras |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті