Наукова електронна бібліотека
періодичних видань НАН України

On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Inpoonjai, P.
dc.contributor.author Jiarasuksakun, T.
dc.date.accessioned 2023-03-02T15:26:44Z
dc.date.available 2023-03-02T15:26:44Z
dc.date.issued 2019
dc.identifier.citation On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs / P. Inpoonjai, T. Jiarasuksakun // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 1. — С. 107–122. — Бібліогр.: 15 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC: Primary 05C78; Secondary 05B15.
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/188480
dc.description.abstract Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1 + |E(G)|) deg(v)/2. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist. uk_UA
dc.description.sponsorship The authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис