Показати простий запис статті
dc.contributor.author |
Kirichuka, A. |
|
dc.date.accessioned |
2021-02-14T10:51:09Z |
|
dc.date.available |
2021-02-14T10:51:09Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Multiple solutions of boundary-value problems for Hamiltonian systems / A. Kirichuka // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 184-197 — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1562-3076 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/177301 |
|
dc.description.abstract |
We consider two-point boundary-value problems for Hamiltonian system of the form x' = f(k, y), y' = g(x, λ), where k and λ are parameters. We estimate the number of solutions, both positive and oscillatory, for the boundary-value problems. Our main tool is the phase plane analysis combined with evaluations of time map functions. The bifurcation diagram and solution curves for Hamiltonian system are constructed. Examples are considered illustrating bifurcations with respect to the parameters k and λ. |
uk_UA |
dc.description.abstract |
Розглянуто двоточкову граничну задачу для гамiльтонової системи вигляду x' = f(k, y), y' = g(x, λ), де k i λ — параметри. Наведено оцiнку кiлькостi додатних та осцилюючих розв’язкiв граничної задачi. Основним засобом є аналiз фазової площини та обчислення функцiй часового вiдображення. Розглянуто бiфуркацiйнi дiаграми та кривi розв’язкiв гамiльтонової системи. Наведено приклади бiфуркацiй вiдносно параметрiв k i λ. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Нелінійні коливання |
|
dc.title |
Multiple solutions of boundary-value problems for Hamiltonian systems |
uk_UA |
dc.title.alternative |
Кратні розв’язки граничних задач для гамільтонових систем |
uk_UA |
dc.title.alternative |
Кратные решения краевых задач для гамильтоновых систем |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
517.9 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті