Показати простий запис статті
dc.contributor.author |
Suvorov, S.G. |
|
dc.date.accessioned |
2020-06-09T16:41:31Z |
|
dc.date.available |
2020-06-09T16:41:31Z |
|
dc.date.issued |
1999 |
|
dc.identifier.citation |
Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. |
uk_UA |
dc.identifier.issn |
0236-0497 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/169284 |
|
dc.description.abstract |
The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Нелинейные граничные задачи |
|
dc.title |
Palais-Smale condition for chiral fields |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті