Показати простий запис статті
dc.contributor.author |
Mel'nyk, T.A. |
|
dc.date.accessioned |
2020-06-06T18:07:41Z |
|
dc.date.available |
2020-06-06T18:07:41Z |
|
dc.date.issued |
2005 |
|
dc.identifier.citation |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ. |
uk_UA |
dc.identifier.issn |
0236-0497 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/169156 |
|
dc.description.abstract |
The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Нелинейные граничные задачи |
|
dc.title |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті