Наукова електронна бібліотека
періодичних видань НАН України

Точки сукупної неперервності та великі коливання

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Маслюченко, В.К.
dc.contributor.author Нестеренко, В.В.
dc.date.accessioned 2020-02-18T06:35:13Z
dc.date.available 2020-02-18T06:35:13Z
dc.date.issued 2010
dc.identifier.citation Точки сукупної неперервності та великі коливання / В.К. Маслюченко, В.В. Нестеренко // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 791–800. — Бібліогр.: 24 назв. — укр. uk_UA
dc.identifier.issn 1027-3190
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/166166
dc.description.abstract Для топологических пространств X, Y и метрического пространства Z введен новый класс N(X×Y,Z) отображений f:X×Y→Z, содержащий все горизонтально квазинепрерывные и непрерывные относительно второй переменной отображения, и установлено, что для каждого отображения f из этого класса и произвольного множества B исчислимого типа в Y множество CB(f) всех точек х∈X таких, что f является совокупно непрерывным в каждой точке множества {x}×B, есть остаточным в X. Кроме того, доказано, что если X — беровское пространство, Y — метризуемый компакт, Z — метрическое пространство f∈N(X×Y,Z), то для каждого ε>0 проекция на X множества Dε(f) всех тех точек p∈X×Y, в которых колебание ωf(p)≥ε, является замкнутым и нигде не плотным множеством в X. uk_UA
dc.description.abstract For topological spaces X and Y and a metric space Z, we introduce a new class N(X×Y,Z) of mappings f: X × Y → Z containing all horizontally quasicontinuous mappings continuous with respect to the second variable. It is shown that, for each mapping f from this class and any countable-type set B in Y, the set C B (f) of all points x from X such that f is jointly continuous at any point of the set {x} × B is residual in X: We also prove that if X is a Baire space, Y is a metrizable compact set, Z is a metric space, and f∈N(X×Y,Z), then, for any ε > 0, the projection of the set D ε(f) of all points p ∈ X × Y at which the oscillation ω f (p) ≥ ε onto X is a closed set nowhere dense in X. uk_UA
dc.language.iso uk uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Український математичний журнал
dc.subject Статті uk_UA
dc.title Точки сукупної неперервності та великі коливання uk_UA
dc.title.alternative Points of joint continuity and large oscillations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 517.51


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис