Наукова електронна бібліотека
періодичних видань НАН України

Generalized Bombieri–Lagarias’ theorem and generalized Li’s criterion with its arithmetic interpretation

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Sekatski, S.K.
dc.date.accessioned 2020-02-13T08:05:47Z
dc.date.available 2020-02-13T08:05:47Z
dc.date.issued 2014
dc.identifier.citation Generalized Bombieri–Lagarias’ theorem and generalized Li’s criterion with its arithmetic interpretation / S.K. Sekatski // Український математичний журнал. — 2014. — Т. 66, № 3. — С. 371–383. — Бібліогр.: 13 назв. — англ. uk_UA
dc.identifier.issn 1027-3190
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/165313
dc.description.abstract We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums kn=Σρ(1−(1−1ρ)n) over zeros of the Riemann xi-function and the derivatives are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a, except a = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums kn,a=Σρ(1−(ρ−aρ+a−1)n) for any real a such that a < 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with a > 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines. uk_UA
dc.description.abstract Показано, що критерій Лі є еквівалентним гіпотезі Рімана, тобто твердження, що суми kn=Σρ(1−(1−1ρ)n) нулях ріманової хі-функції та похідні, є невід'ємними тоді і тільки тоді, коли справедлива гіпотеза Рімана, може бути узагальнене, а невід'ємність деяких похідних ріманової хі-функції, що оцінюються у довільній точці a, крім a=1/2, може бути застосована, як критерій, еквівалентний гіпотезі Рімана. А саме, показано, що суми kn,a=Σρ(1−(ρ−aρ+a−1)n) для будь-яких дійсних a та будь-яких a<1/2 є невід'ємними тоді і тільки тоді, коли справедлива гіпотеза Рімана (відповідно такі ж похідні з a>1/2 повинні бути недодатніми). Наведено арифметичну інтерпретацію узагальненого критерію Лі. Подібно до критерію Лі теорема Бомбієрі та Лагаріаса, у застосуванні до деяких мультимножин комплексних чисел, також може бути узагальнена аналогічним чином. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Український математичний журнал
dc.subject Статті uk_UA
dc.title Generalized Bombieri–Lagarias’ theorem and generalized Li’s criterion with its arithmetic interpretation uk_UA
dc.title.alternative Узагальнена теорема Бомбієрі - Лагаріаса та узагальнений критерій Лі зі своєю арифметичною інтерпретацією uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 512.5


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис