Наукова електронна бібліотека
періодичних видань НАН України

Теория потенциала относительно согласованных ядер: теорема о полноте, последовательности потенциалов

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Зорий, Н.В.
dc.date.accessioned 2020-02-10T20:48:06Z
dc.date.available 2020-02-10T20:48:06Z
dc.date.issued 2004
dc.identifier.citation Теория потенциала относительно согласованных ядер: теорема о полноте, последовательности потенциалов / Н.В. Зорий // Український математичний журнал. — 2004. — Т. 56, № 11. — С. 1513-1526. — Бібліогр.: 20 назв. — рос. uk_UA
dc.identifier.issn 1027-3190
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/164834
dc.description.abstract Концепція узгоджених ядер, уведена Фугледе у I960 p., отримала широке застосування в екстремальних задачах теорії потенціалу на класах додатних мір. У роботі показано ефективність цієї концепції у дослідженні екстремальних задач на досить загальних класах знакозмігших мір. Так, для довільного узгодженого ядра у локально компактному просторі доведено теорему про сильну повноту вельми загальних підпросторів простору E всіх мір зі скінченною енергією. (Зазначимо, що відповідно до відомого коїпрприкладу Картана весь простір E є сильно неповним навіть у класичному випадку ядра Ньютона в Rⁿ). З допомогою згаданої теореми отримано нові результат у дослідженні варіаційної задачі Гаусса: у некомпактному випадку наведено опис широких та (або) сильних граничних мір мінімізуючих послідовностей, знайдено достатні умови розв'язності. uk_UA
dc.description.abstract The concept of consistent kernels introduced by Fuglede in 1960 is widely used in extremal problems of the theory of potential on classes of positive measures. In the present paper, we show that this concept is also efficient for the investigation of extremal problems on fairly broad classes of signed measures. In particular, for an arbitrary consistent kernel in a locally compact space, we prove a theorem on the strong completeness of fairly general subspaces E of all measures with finite energy. (Note that, according to the well-known Cartan counterexample, the entire space E is strongly incomplete even in the classical case of the Newton kernel in ℝⁿ Using this theorem, we obtain new results for the Gauss variational problem, namely, in the non-compact case, we give a description of vague and (or) strong limiting measures of minimizing sequences and obtain sufficient solvability conditions. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Український математичний журнал
dc.subject Статті uk_UA
dc.title Теория потенциала относительно согласованных ядер: теорема о полноте, последовательности потенциалов uk_UA
dc.title.alternative Theory of Potential with Respect to Consistent Kernels; Theorem on Completeness and Sequences of Potentials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 517.982.26


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис