Показати простий запис статті

dc.contributor.author Dimitriu, G.
dc.contributor.author Cuciureanu, R.
dc.date.accessioned 2008-08-26T13:22:57Z
dc.date.available 2008-08-26T13:22:57Z
dc.date.issued 2006
dc.identifier.citation Data assimilation using kalman filter techniques / G. Dimitriu, R. Cuciureanu // Проблеми програмування. — 2006. — N 2-3. — С. 688-693. — Бібліогр.: 5 назв. — англ. en_US
dc.identifier.issn 1727-4907
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/1581
dc.description.abstract Kalman filtering represents a powerful framework for solving data assimilation problems. Of interest here are the low-rank filters which are computationally efficient to solve large scale data assimilation problems. The low-rank filters are either based on factorization of the covariance matrix (RRSQRT filter), or approximation of statistics from a finite ensemble (ENKF). A new direction in filter implementation is the use of two filters next to each other of the same form or hybrid (POENKF). The factorization approach is based on the linear Kalman filter which can be extended towards nonlinear models. In this paper, the background, implementation and performance of some common used low-rank filters is discussed. Numerical results are presented. en_US
dc.language.iso en en_US
dc.publisher Інститут програмних систем НАН України en_US
dc.subject Прикладне програмне забезпечення en_US
dc.title Data assimilation using kalman filter techniques en_US
dc.type Article en_US
dc.status published earlier en_US
dc.identifier.udc 004.75


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис