Показати простий запис статті
dc.contributor.author |
Petravchuk, A.P. |
|
dc.contributor.author |
Iena, O.G. |
|
dc.date.accessioned |
2019-06-20T03:13:29Z |
|
dc.date.available |
2019-06-20T03:13:29Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
On closed rational functions in several variables / A.P. Petravchuk, O.G. Iena // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 115–124. — Бібліогр.: 10 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 26C15. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/157399 |
|
dc.description.abstract |
Let K = K¯ be a field of characteristic zero. An
element ϕ ∈ K(x1,... ,xn) is called a closed rational function if
the subfield K(ϕ) is algebraically closed in the field K(x1,... ,xn).
We prove that a rational function ϕ = f/g is closed if f and g are
algebraically independent and at least one of them is irreducible.
We also show that a rational function ϕ = f/g is closed if and
only if the pencil αf + βg contains only finitely many reducible
hypersurfaces. Some sufficient conditions for a polynomial to be
irreducible are given. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On closed rational functions in several variables |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті