Показати простий запис статті
dc.contributor.author |
Gaiduk, T.N. |
|
dc.contributor.author |
Sergeichuk, V.V. |
|
dc.contributor.author |
Zharko, N.A. |
|
dc.date.accessioned |
2019-06-18T17:30:09Z |
|
dc.date.available |
2019-06-18T17:30:09Z |
|
dc.date.issued |
2005 |
|
dc.identifier.citation |
Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 15A21; 16G20. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156589 |
|
dc.description.abstract |
V.I. Arnold [Russian Math. Surveys, 26 (no. 2),
1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a
given square matrix A, but also the family of all matrices close to
A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations
of quiver representations and obtain a miniversal deformation of
matrices of chains of linear mappings
V₁ V₂ · · · Vt ,
where all Vi are complex or real vector spaces and each line denotes
−→ or ←−. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Miniversal deformations of chains of linear mappings |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті