Показати простий запис статті
dc.contributor.author |
Bondarenko, V.M. |
|
dc.date.accessioned |
2019-06-18T14:12:06Z |
|
dc.date.available |
2019-06-18T14:12:06Z |
|
dc.date.issued |
2004 |
|
dc.identifier.citation |
On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156457 |
|
dc.description.abstract |
Let Λ denote an extended Dynkin diagram with
vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set
of vertices j such that there is an edge joining i and j; one assumes
the diagram has a unique vertex p, say p = 0, with |S(p)| = 3.
Further, denote by Λ \ 0 the full subgraph of Λ with vertex set
Λ0 \ {0}. Let ∆ = (δi
|i ∈ Λ0) ∈ Z
|Λ0| be an imaginary root of Λ,
and let k be a field of arbitrary characteristic (with unit element
1). We prove that if Λ is an extended Dynkin diagram of type
D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei
,
i ∈ Λ0 \ {0}, and relations e
2
i = ei
, eiej = 0 if i and j 6= i belong to
the same connected component of Λ \ 0, and Pn
i=1 δi ei = δ01 has
wild representation time. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On wildness of idempotent generated algebras associated with extended Dynkin diagrams |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті