Показати простий запис статті
dc.contributor.author |
Sinitsa, D. |
|
dc.date.accessioned |
2019-06-17T18:59:06Z |
|
dc.date.available |
2019-06-17T18:59:06Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:20D10, 20D15, 20D30. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156024 |
|
dc.description.abstract |
Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contain H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure HsG of H in G. We prove that the following conditions are equivalent: (1) every subgroup of G is Hall S-permutably embedded in G; (2) the nilpotent residual GN of G is a Hall cyclic of square-free order subgroup of G; (3) G=D⋊M is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G. |
uk_UA |
dc.description.sponsorship |
The author is very grateful for the helpful suggestions and remarks of the referee. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
A note on Hall S-permutably embedded subgroups of finite groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті