Показати простий запис статті
dc.contributor.author |
Futorny, V. |
|
dc.contributor.author |
Schwarz, J. |
|
dc.date.accessioned |
2019-06-17T15:32:40Z |
|
dc.date.available |
2019-06-17T15:32:40Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Galois orders of symmetric differential operators / V. Futorny, J. Schwarz // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 35-46. — Бібліогр.: 41 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:13N10, 16D30, 16S32, 16S85. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/155929 |
|
dc.description.abstract |
In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras.
In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for gln and sln in~[18] and~[21], respectively.
We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order. |
uk_UA |
dc.description.sponsorship |
Supported in part by CNPq grant (301320/2013-6) and by Fapesp grant(2014/09310-5)
Supported in part by Fapesp grant (2014/25612-1) |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Galois orders of symmetric differential operators |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті