Показати простий запис статті

dc.contributor.author Jaber, A.
dc.date.accessioned 2019-06-16T14:32:29Z
dc.date.available 2019-06-16T14:32:29Z
dc.date.issued 2016
dc.identifier.citation Generalization of primal superideals / A. Jaber // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 202-213. — Бібліогр.: 13 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC:13A02, 16D25, 16W50.
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/155239
dc.description.abstract Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R, then r∈I. We denote byνφ(I) the set of all homogeneous elements in R that are notφ-prime to I. We define Ito beφ-primal if the set P=([(νφ(I))0+ (νφ(I))1∪ {0}] +φ(I) : ifφ6=φ∅(νφ(I))0+ (νφ(I))1: ifφ=φ∅forms a super ideal of R. For example if we takeφ∅(I) =∅(resp.φ0(I) = 0), aφ-primal superideal is a primal super ideal (resp., a weakly primal super ideal). In this paper we study several generalizations of primal super ideals of R and their properties. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title Generalization of primal superideals uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис