Показати простий запис статті
dc.contributor.author |
Verbitsky, O. |
|
dc.date.accessioned |
2019-06-15T17:45:34Z |
|
dc.date.available |
2019-06-15T17:45:34Z |
|
dc.date.issued |
2003 |
|
dc.identifier.citation |
Ramseyan variations on symmetric subsequences / O. Verbitsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 111–124. — Бібліогр.: 16 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154678 |
|
dc.description.abstract |
A theorem of Dekking in the combinatorics of
words implies that there exists an injective order-preserving transformation f : {0, 1, . . . , n} → {0, 1, . . . , 2n} with the restriction
f(i + 1) ≤ f(i) + 2 such that for every 5-term arithmetic progression P its image f(P) is not an arithmetic progression. In this paper we consider symmetric sets in place of arithmetic progressions
and prove lower and upper bounds for the maximum M = M(n)
such that every f as above preserves the symmetry of at least one
symmetric set S ⊆ {0, 1, . . . , n} with |S| ≥ M. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Ramseyan variations on symmetric subsequences |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті