Показати простий запис статті
dc.contributor.author |
Cırulis, J. |
|
dc.date.accessioned |
2019-06-15T17:37:46Z |
|
dc.date.available |
2019-06-15T17:37:46Z |
|
dc.date.issued |
2003 |
|
dc.identifier.citation |
Multi-algebras from the viewpoint of algebraic logic / J. Cırulis // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 20–31. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2001 Mathematics Subject Classification: 08A99; 03G15, 08A62. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154670 |
|
dc.description.abstract |
Where U is a structure for a first-order language
L
≈ with equality ≈, a standard construction associates with every
formula f of L
≈ the set kfk of those assignments which fulfill f in
U. These sets make up a (cylindric like) set algebra Cs(U) that
is a homomorphic image of the algebra of formulas. If L
≈ does
not have predicate symbols distinct from ≈, i.e. U is an ordinary
algebra, then Cs(U) is generated by its elements ks ≈ tk; thus, the
function (s, t) 7→ ks ≈ tk comprises all information on Cs(U).
In the paper, we consider the analogues of such functions for
multi-algebras. Instead of ≈, the relation ε of singular inclusion
is accepted as the basic one (sεt is read as ‘s has a single value,
which is also a value of t’). Then every multi-algebra U can be
completely restored from the function (s, t) 7→ ks ε tk. The class
of such functions is given an axiomatic description. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Multi-algebras from the viewpoint of algebraic logic |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті