Показати простий запис статті
dc.contributor.author |
Oz Ben-Shimol |
|
dc.date.accessioned |
2019-06-15T16:50:49Z |
|
dc.date.available |
2019-06-15T16:50:49Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
On Galois groups of prime degree polynomials with complex roots / Oz Ben-Shimol // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 2. — С. 99–107. — Бібліогр.: 19 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification:20B35; 12F12. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154610 |
|
dc.description.abstract |
Let f be an irreducible polynomial of prime degree p≥5 over Q, with precisely k pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if p≥4k+1 then Gal(f/Q) is isomorphic to Ap or Sp. This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska.
If such a polynomial f is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree p over Q having complex roots. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On Galois groups of prime degree polynomials with complex roots |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті