Показати простий запис статті
dc.contributor.author |
Protasov, I.V. |
|
dc.date.accessioned |
2019-06-14T03:35:28Z |
|
dc.date.available |
2019-06-14T03:35:28Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 37B05, 54E15. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/153361 |
|
dc.description.abstract |
A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space.
We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set X
determined by some group of permutations of X. |
uk_UA |
dc.description.sponsorship |
Thanks to my daughters. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Balleans of bounded geometry and G-spaces |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті