Показати простий запис статті
dc.contributor.author |
Mikaelian, V.H. |
|
dc.date.accessioned |
2019-06-14T03:22:22Z |
|
dc.date.available |
2019-06-14T03:22:22Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:20E08, 20E22, 20F16. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/153333 |
|
dc.description.abstract |
A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble. |
uk_UA |
dc.description.sponsorship |
The author was supported in part by SCS RA, joint Armenian-Russian research project 13RF-030 and by State Committee Science MES RA grant in frame of project 13-1A246. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
A geometrical interpretation of infinite wreath powers |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті