Показати простий запис статті

dc.contributor.author Egri-Nagy, A.
dc.contributor.author Nehaniv, C.L.
dc.date.accessioned 2019-06-12T20:52:55Z
dc.date.available 2019-06-12T20:52:55Z
dc.date.issued 2015
dc.identifier.citation Symmetries of automata / A. Egri-Nagy, C.L. Nehaniv // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 48-57. — Бібліогр.: 7 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC:20B25, 20E22, 20M20, 20M35, 68Q70.
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/152786
dc.description.abstract For a given reachable automaton A, we prove that the (state-) endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group G of A, a finite automaton A (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of M(A), namely the symmetry group G and the quotient of M(A) induced by the action of G. Moreover, this division is an embedding if M(A) is transitive on states of A. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element. uk_UA
dc.description.sponsorship This work was in part supported by the EU FP6 Project OPAALS (Contract No IST-034824) and the FP7 EU Project BIOMICS (contract number CNECT-318202). This support is gratefully acknowledged. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title Symmetries of automata uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис