Показати простий запис статті
dc.contributor.author |
Egri-Nagy, A. |
|
dc.contributor.author |
Nehaniv, C.L. |
|
dc.date.accessioned |
2019-06-12T20:52:55Z |
|
dc.date.available |
2019-06-12T20:52:55Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Symmetries of automata / A. Egri-Nagy, C.L. Nehaniv // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 48-57. — Бібліогр.: 7 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:20B25, 20E22, 20M20, 20M35, 68Q70. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/152786 |
|
dc.description.abstract |
For a given reachable automaton A, we prove that the (state-) endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group G of A, a finite automaton A (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of M(A), namely the symmetry group G and the quotient of M(A) induced by the action of G. Moreover, this division is an embedding if M(A) is transitive on states of A. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element. |
uk_UA |
dc.description.sponsorship |
This work was in part supported by the EU FP6 Project OPAALS (Contract No
IST-034824) and the FP7 EU Project BIOMICS (contract number CNECT-318202).
This support is gratefully acknowledged. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Symmetries of automata |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті