Показати простий запис статті
dc.contributor.author |
Bekh-Ochir, C. |
|
dc.contributor.author |
Rankin, S.A. |
|
dc.date.accessioned |
2019-06-10T10:57:55Z |
|
dc.date.available |
2019-06-10T10:57:55Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:16R10. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/152343 |
|
dc.description.abstract |
In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific examples of maximal T-spaces of k[x]₀ were determined at that time. In a subsequent work, we proposed that for a finite field k of characteristic p > 2 and order q, for each positive integer n which is a power of 2, the T-space Wn, generated by {x + xqⁿ, xqⁿ⁺¹}, is maximal, and we proved that W₁ is maximal. In this note, we prove that for q = p = 3, W₂ is maximal. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
A maximal T-space of F₃[x]₀ |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті