Показати простий запис статті
dc.contributor.author |
Al-Sharo, Kh.A. |
|
dc.contributor.author |
Shemetkova, O. |
|
dc.contributor.author |
Xiaolan Yi |
|
dc.date.accessioned |
2019-06-08T09:40:28Z |
|
dc.date.available |
2019-06-08T09:40:28Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 Mathematics Subject Classification:20D10, 20D20, 20D25. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/152183 |
|
dc.description.abstract |
Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following. |
uk_UA |
dc.description.sponsorship |
Research of the third author (corresponding author) was supported by NNSF of China (grant no. 11101369). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On S-quasinormally embedded subgroups of finite groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті