Показати простий запис статті
dc.contributor.author |
Данилов, В.Я. |
|
dc.contributor.author |
Жиров, О.Л. |
|
dc.contributor.author |
Бідюк, П.І. |
|
dc.date.accessioned |
2019-04-23T19:11:45Z |
|
dc.date.available |
2019-04-23T19:11:45Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Оцінювання кредитних ризиків методами інтелектуального анализу даних / В.Я. Данилов, О.Л. Жиров, П.І. Бідюк // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 33-48. — Бібліогр.: 9 назв. — укр. |
uk_UA |
dc.identifier.issn |
1681–6048 |
|
dc.identifier.other |
DOI: https://doi.org/10.20535/SRIT.2308-8893.2017.1.03 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/151062 |
|
dc.description.abstract |
Проаналізовано кредитні ризики фінансових організацій за допомогою методів інтелектуального аналізу даних. Фактичні статистичні дані, які характеризують позичальників кредитів, використано для побудови математичних моделей у формі рівнянь типу логіт, дерев рішень і байєсівських мереж. Якість побудованих моделей проаналізовано за множиною належних статистичних критеріїв, які забезпечують основу для вибору кращої альтернативної моделі. Із використанням двох вибірок банківських даних виконано ряд обчислювальних експериментів і виявлено кращі моделі у формі рівнянь типу логіт і байєсівські мережі. Передбачається розширити множину методів побудови математичних моделей і реалізувати ідею комбінування оцінок, згенерованих за альтернативними методами. Обґрунтовано доцільність розроблення та реалізацію спеціалізованої системи підтримання прийняття рішень для виконання досліджень у галузі оцінювання та прогнозування фінансових ризиків. |
uk_UA |
dc.description.abstract |
Проанализированы кредитные риски финансовых организаций с помощью методов интеллектуального анализа данных. Фактические статистические данные, которые характеризуют заемщиков кредитов, использованы для построения математических моделей в форме уравнений типа логит, деревьев решений и байесовских сетей. Качество построенных моделей проанализировано с помощью множества соответствующих статистических критериев, которые дают основание для выбора лучшей альтернативной модели. С использованием двух выборок банковских данных выполнен ряд вычислительных экспериментов и установлено, что лучшими оказались модели типа логит и байесовские сети. Предусматриваются расширение множества методов построения математических моделей и реализация идеи комбинирования оценок, сгенерированных альтернативними методами. Обоснованы целесообразность разработки и реализация специализированной системы поддержки принятия решений для выполнения исследований в сфере оценивания и прогнозирования финансовых рисков. |
uk_UA |
dc.description.abstract |
Проанализированы кредитные риски финансовых организаций с помощью методов интеллектуального анализа данных. Фактические статистические данные, которые характеризуют заемщиков кредитов, использованы для построения математических моделей в форме уравнений типа логит, деревьев решений и байесовских сетей. Качество построенных моделей проанализировано с помощью множества соответствующих статистических критериев, которые дают основание для выбора лучшей альтернативной модели. С использованием двух выборок банковских данных выполнен ряд вычислительных экспериментов и установлено, что лучшими оказались модели типа логит и байесовские сети. Предусматриваются расширение множества методов построения математических моделей и реализация идеи комбинирования оценок, сгенерированных альтернативними методами. Обоснованы целесообразность разработки и реализация специализированной системы поддержки принятия решений для выполнения исследований в сфере оценивания и прогнозирования финансовых рисков. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
uk_UA |
dc.relation.ispartof |
Системні дослідження та інформаційні технології |
|
dc.subject |
Проблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системах |
uk_UA |
dc.title |
Оцінювання кредитних ризиків методами інтелектуального анализу даних |
uk_UA |
dc.title.alternative |
Оценивание кредитных рисков методами интеллектуального анализа данных |
uk_UA |
dc.title.alternative |
Estimation of credit risks using the data mining methods |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
519.226, 330.322 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті