Показати простий запис статті
dc.contributor.author |
de Commer, K. |
|
dc.date.accessioned |
2019-02-21T07:27:39Z |
|
dc.date.available |
2019-02-21T07:27:39Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure / K. de Commer // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 33 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 17B37; 20G42; 46L65 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2013.081 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149373 |
|
dc.description.abstract |
Let g be a compact simple Lie algebra. We modify the quantized enveloping ∗-algebra associated to g by a real-valued character on the positive part of the root lattice. We study the ensuing Verma module theory, and the associated quotients of these modified quantized enveloping ∗-algebras. Restricting to the locally finite part by means of a natural adjoint action, we obtain in particular examples of quantum homogeneous spaces in the operator algebraic setting. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in
honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html.
It is a pleasure to thank the following people for discussions on topics related to the subject
of this paper: J. Bichon, P. Bieliavsky, H.P. Jakobsen, E. Koelink, S. Kolb, U. Kr¨ahmer and
S. Neshveyev. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті